Dual univariatem-ary subdivision schemes of de Rham-type

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual Hermite subdivision schemes of de Rham-type

Though a Hermite subdivision scheme is non-stationary by nature, its non-stationarity can be of two types, making useful the distinction between Inherently Stationary (I.S.) and Inherently Non-Stationary (I.N.S.) Hermite subdivision schemes. This paper focuses on the class of inherently stationary, dual non-interpolatory Hermite subdivision schemes that can be obtained from known Hermite interp...

متن کامل

Four-Point n-Ary Interpolating Subdivision Schemes

andApplied Analysis Hindawi Publishing Corporationhttp://www.hindawi.comVolume 2013 ISRNAppliedMathematics Hindawi Publishing Corporationhttp://www.hindawi.comVolume 2013Hindawi Publishing Corporationhttp://www.hindawi.comVolume 2013International Journal ofCombinatorics Hindawi Publishing Corporationhttp://www.hindawi.comVolume 2013Jou...

متن کامل

de Rham Transform of a Hermite Subdivision Scheme

For a Hermite subdivision scheme H of degree d, we define a spectral condition. We have already proved that if it is fulfilled, then there exists an associated affine subdivision scheme S. Moreover, if T is the subdivision matrix of the first difference process ∆S, if the spectral radius ρ(T ) is less than 1, then S is C0 and H is Cd. Generalizing the de Rham corner cutting, from every Hermite ...

متن کامل

Composite Primal/Dual Sqrt(3)-Subdivision Schemes

We present new families of primal and dual subdivision schemes for triangle meshes and √ 3-refinement. The proposed schemes use two simple local rules which cycle between primal and dual meshes a number of times. The resulting surfaces become very smooth at regular vertices if the number of cycles is≥ 2. The C-property is violated only at low-valence irregular vertices, and can be restored by s...

متن کامل

A unified framework for primal/dual quadrilateral subdivision schemes

Quadrilateral subdivision schemes come in primal and dual varieties, splitting faces or respectively vertices. The scheme of Catmull-Clark is an example of the former, while the Doo-Sabin scheme exemplifies the latter. In this paper we consider the construction of an increasing sequence of alternating primal/dual quadrilateral subdivision schemes based on a simple averaging approach. Beginning ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2013

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2013.05.009